

Institute of Aeronautics and Applied Mechanics

Finite element method 2 (FEM 2)

Variable conditioning of the system - an example of two springs

10.2021

$$[K] - \{9\} = \{F\}$$

 $[K + SK] \{9 + S9\} = \{F + JF\}$

relative error of the global vector of nodal parameters:

$$\frac{\|\{59\}\|}{\|\{9\}\|} \leq \|[K]\| \cdot \|[K]^{-1}\| \cdot \left(\frac{\|\{5F\}\|}{\|\{F\}\|} + \frac{\|[JK]\|}{\|[K]\|} \right)$$

$$= Cond [K] \qquad J. Steer.$$

Condition number:

cond $[K] \approx 1$ - problem well-conditioned cond $[K] \gg 1$ - problem ill-conditioned

(great differences between FEs stiffnesses, unstable boundary conditions)

	rector	matrix				
Euclidean norm L2	{93 ₂ = 1\(\bar{\bar{\bar{\bar{\bar{\bar{\bar{	$\ [k]\ _{2} = \sqrt{\sum_{j} \sum_{i} (k_{ij})^{2}}$				
Maximum norm Los	{9} = max qi	$\ [K]\ _{co} = \max_{i} \left(\sum_{j} K_{ij} \right)$				

EXAMPLE:

$$\frac{Q}{q_{1}=0} = \frac{Q}{k_{1}} = \frac{Q}{q_{2}} = \frac{Q}{k_{2}} = \frac{Q}{k_{3}} = \frac{Q}{k_{4}} = \frac{Q}{k_{5}} = \frac{Q}{k_{5}}$$

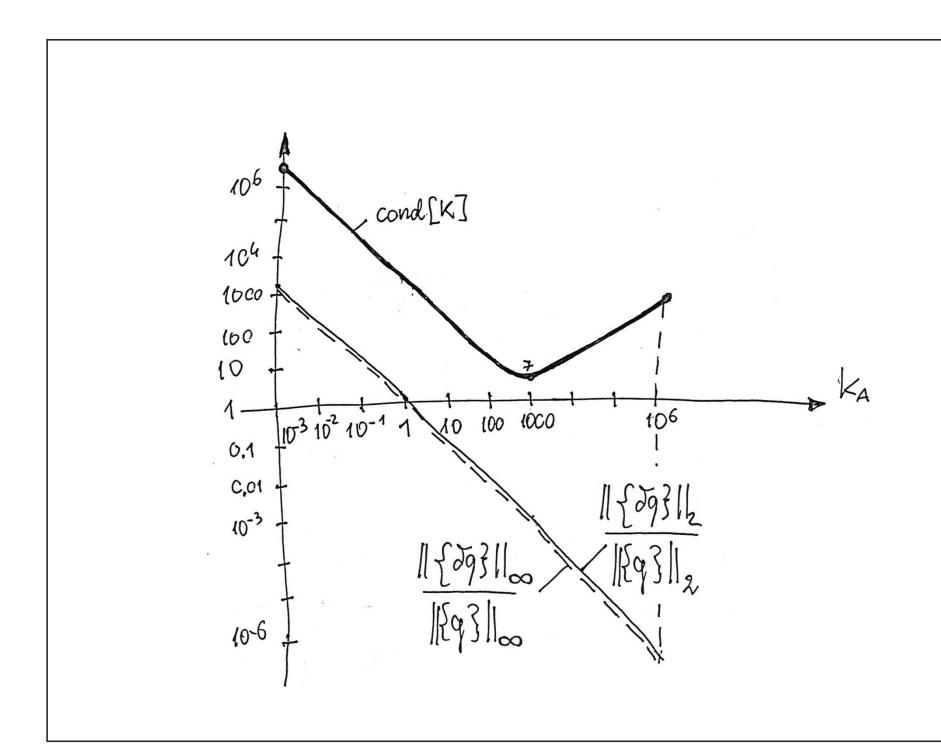
Lets assume:

$$F_{2} = 1N$$
, $F_{3} = -1N$ (forces being)
in equilibrium)
 $J_{2} = -0.001.N$, $J_{3} = 0$
 $F_{2} + J_{2} = 0.999N$, $F_{3} + J_{3} = -1N$

$$\begin{cases}
q_{2} \\ = \begin{cases} \frac{1}{k_{A}} & k_{A} \\ \frac{1}{k_{A}} & \frac{1}{k_{A}} + \frac{1}{k_{B}} \end{cases} \\
\begin{cases}
F_{2} \\ = \end{cases} \\
q_{2} = \frac{F_{2}}{k_{A}} + \frac{F_{3}}{k_{A}} & (1), \quad q_{3} = \frac{F_{2}}{k_{A}} + \frac{1}{F_{3}} & (\frac{1}{k_{A}} + \frac{1}{k_{B}}) & (2), \\
q_{2} + \delta q_{2} = \frac{F_{2} + \delta F_{2}}{k_{A}} + \frac{F_{3} + \delta F_{3}}{k_{A}} & (3), \quad q_{2} + \delta q_{3} = \frac{F_{2} + \delta F_{2}}{k_{A}} + (F_{3} + \delta F_{3}) & (\frac{1}{k_{A}} + \frac{1}{k_{B}}) & (4), \\
\delta q_{2} = (q_{2} + \delta q_{2}) - q_{2} & (5), \quad \delta q_{3} = (q_{3} + \delta q_{3}) - q_{3} & (6)
\end{cases}$$
Euclidean norms:
$$\| \{q_{3}^{2} \|_{2} = \frac{q_{2}^{2} + q_{3}^{2}}{q_{2}^{2} + F_{3}^{2}}, \quad \| \{\delta F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}} \\
\| \{F_{3}^{2} \|_{2} = \frac{F_{2}^{2} + F_{3}^{2}}{F_{3}^{2} + F_{3}^{2}}, \quad \| \{\delta F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}} \\
\| \{F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + 5q_{3}^{2}}, \quad \| \{\delta F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}} \\
\| \{F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + 5q_{3}^{2}}, \quad \| \{\delta F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}} \\
\| \{F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}}, \quad \| \{\delta F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}} \\
\| \{F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}}, \quad \| \{\delta F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}} \\
\| \{F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}}, \quad \| \{\delta F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}} \\
\| \{F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}}, \quad \| \{\delta F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}} \\
\| \{F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}}, \quad \| \{\delta F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}} \\
\| \{F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}}, \quad \| \{F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}}, \quad \| \{F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}}, \quad \| \{F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}}, \quad \| \{F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}}, \quad \| \{F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}}, \quad \| \{F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}}, \quad \| \{F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}}, \quad \| \{F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}}, \quad \| \{F_{3}^{2} \|_{2} = \sqrt{5q_{2}^{2} + \delta F_{3}^{2}}, \quad \| \{F_{3}^{2} \|_{2} = \sqrt$$

$$\frac{\|\{\delta F_3^2\|_2}{\|\{F_3^2\|_2} = 0.7071.10^{-3}$$
Lets assume: $K_B = coust = 1000 \frac{N}{mm}$

[N(mm]	(1)	(2)	(3)	(૫)	(5)	(6)	1/809/11/2/	167	1 1/50 1/50 1/50 1/50 1/50 1/50 1/50 1/5
KA 1	9/2	93	92+592	93+ 693	092	093	11893112		cond(K)-119 F1/2
0.001	0	0.001	-1	-1.001	-1	-4	1414.21	4.106	2828.43
1	0	-0.001	-0-001	-0.002	0.001	-0.001	1.41	4.603	2.83
Y 000	0	6.001	-10-6	-1.001.103	-10-6	-10-6	1.41.103	7	0.00495
106	0	0.001	-10-9	-1.000.10-3	-10-9	-10-9	1.41-10-6	1000	0.7



$$\begin{cases} k_{A}+k_{B}-k_{B} & \int_{1}^{3}q_{2}^{2} = \begin{cases} F_{2} \\ F_{3} \end{cases} \end{cases}$$

$$\begin{cases} (k_{A}+k_{B}) & q_{2}-k_{B} & q_{3}=F_{2} => q_{3} \\ -k_{B} & q_{2}+k_{B} & q_{3}=F_{3} => q_{3} \end{cases}$$

$$\begin{cases} q_3 = \frac{k_A + k_B}{k_B} q_2 - \frac{F_2}{k_B} \\ q_3 = q_2 + \frac{F_3}{k_B} \end{cases}$$

